Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract About 3%–10% of Type I active galactic nuclei (AGNs) have double-peaked broad Balmer lines in their optical spectra originating from the motion of gas in their accretion disk. Double-peaked profiles arise not only in AGNs, but occasionally appear during optical flares from tidal disruption events and changing-state AGNs. In this paper, we identify 250 double-peaked emitters (DPEs) among a parent sample of optically variable broad-line AGNs in the Zwicky Transient Facility (ZTF) survey, corresponding to a DPE fraction of 19%. We model spectra of the broad Hαemission-line regions and provide a catalog of the fitted accretion disk properties for the 250 DPEs. Analysis of power spectra derived from the 5 yr ZTF light curves finds that DPE light curves have similar amplitudes and power-law indices to other broad-line AGNs. Follow-up spectroscopy of 12 DPEs reveals that ∼50% display significant changes in the relative strengths of their red and blue peaks over long 10–20 yr timescales, indicating that broad-line profile changes arising from spiral arm or hotspot rotation are common among optically variable DPEs. Analysis of the accretion disk parameters derived from spectroscopic modeling provides evidence that DPEs are not in a special accretion state, but are simply normal broad-line AGNs viewed under the right conditions for the accretion disk to be easily visible. We include inspiraling supermassive black hole binary candidate SDSSJ1430+2303 in our analysis, and discuss how its photometric and spectroscopic variability is consistent with the disk-emitting AGN population in the ZTF survey.more » « less
- 
            Abstract “Changing-look” active galactic nuclei (CL-AGNs) challenge our basic ideas about the physics of accretion flows and circumnuclear gas around supermassive black holes. Using first-year Sloan Digital Sky Survey V (SDSS-V) repeated spectroscopy of nearly 29,000 previously known active galactic nuclei (AGNs), combined with dedicated follow-up spectroscopy, and publicly available optical light curves, we have identified 116 CL-AGNs where (at least) one broad emission line has essentially (dis-)appeared, as well as 88 other extremely variable systems. Our CL-AGN sample, with 107 newly identified cases, is the largest reported to date, and includes ∼0.4% of the AGNs reobserved in first-year SDSS-V operations. Among our CL-AGNs, 67% exhibit dimming while 33% exhibit brightening. Our sample probes extreme AGN spectral variability on months to decades timescales, including some cases of recurring transitions on surprisingly short timescales (≲2 months in the rest frame). We find that CL events are preferentially found in lower-Eddington-ratio (fEdd) systems: Our CL-AGNs have afEdddistribution that significantly differs from that of a carefully constructed, redshift- and luminosity-matched control sample (Anderson–Darling test yieldingpAD≈ 6 × 10−5; medianfEdd≈ 0.025 versus 0.043). This preference for lowfEddstrengthens previous findings of higher CL-AGN incidence at lowerfEdd, found in smaller samples. Finally, we show that the broad Mgiiemission line in our CL-AGN sample tends to vary significantly less than the broad Hβemission line. Our large CL-AGN sample demonstrates the advantages and challenges in using multi-epoch spectroscopy from large surveys to study extreme AGN variability and physics.more » « less
- 
            Abstract Tidal disruption events (TDEs) offer a unique way to study dormant black holes. While the number of observed TDEs has grown thanks to the emergence of wide-field surveys in the past few decades, questions regarding the nature of the observed optical, UV, and X-ray emission remain. We present a uniformly selected sample of 30 spectroscopically classified TDEs from the Zwicky Transient Facility Phase I survey operations with follow-up Swift UV and X-ray observations. Through our investigation into correlations between light-curve properties, we recover a shallow positive correlation between the peak bolometric luminosity and decay timescales. We introduce a new spectroscopic class of TDE, TDE-featureless, which are characterized by featureless optical spectra. The new TDE-featureless class shows larger peak bolometric luminosities, peak blackbody temperatures, and peak blackbody radii. We examine the differences between the X-ray bright and X-ray faint populations of TDEs in this sample, finding that X-ray bright TDEs show higher peak blackbody luminosities than the X-ray faint subsample. This sample of optically selected TDEs is the largest sample of TDEs from a single survey yet, and the systematic discovery, classification, and follow-up of this sample allows for robust characterization of TDE properties, an important stepping stone looking forward toward the Rubin era.more » « less
- 
            Abstract We present a high-cadence multiepoch analysis of dramatic variability of three broad emission lines (Mgii, Hβ, and Hα) in the spectra of the luminous quasar (λLλ(5100 Å) = 4.7 × 1044erg s−1) SDSS J141041.25+531849.0 atz= 0.359 with 127 spectroscopic epochs over nine years of monitoring (2013–2022). We observe anticorrelations between the broad emission-line widths and flux in all three emission lines, indicating that all three broad emission lines “breathe” in response to stochastic continuum variations. We also observe dramatic radial velocity shifts in all three broad emission lines, ranging from Δv∼ 400 km s−1to ∼800 km s−1, that vary over the course of the monitoring period. Our preferred explanation for the broad-line variability is complex kinematics in the gas in the broad-line region. We suggest a model for the broad-line variability that includes a combination of gas inflow with a radial gradient, an azimuthal asymmetry (e.g., a hot spot), superimposed on the stochastic flux-driven changes to the optimal emission region (“line breathing”). Similar instances of line-profile variability due to complex gas kinematics around quasars are likely to represent an important source of false positives in radial velocity searches for binary black holes, which typically lack the kind of high-cadence data we analyze here. The long-duration, wide-field, and many-epoch spectroscopic monitoring of SDSS-V BHM-RM provides an excellent opportunity for identifying and characterizing broad emission-line variability, and the inferred nature of the inner gas environment, of luminous quasars.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
